Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Immunol ; 8(81): eade0958, 2023 03 17.
Article in English | MEDLINE | ID: covidwho-2213868

ABSTRACT

Emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike glycoprotein that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera, including the nine human coronaviruses, through recognition of a conserved motif that includes the S2' site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization, and, similar to fp.006 and hr2.016, protects mice expressing human angiotensin-converting enzyme 2 against infection when present as a bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae, including SARS-CoV-2 variants.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , Epitopes , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Neutralization Tests
2.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article in English | MEDLINE | ID: covidwho-1979271

ABSTRACT

PEGylated lipids are one of the four constituents of lipid nanoparticle mRNA COVID-19 vaccines. Therefore, various concerns have been raised on the generation of anti-PEG antibodies and their potential role in inducing hypersensitivity reactions following vaccination or in reducing vaccine efficacy due to anti-carrier immunity. Here, we assess the prevalence of anti-PEG antibodies, in a cohort of vaccinated individuals, and give an overview of their time evolution after repeated vaccine administrations. Results indicate that, in our cohort, the presence of PEG in the formulation did not influence the level of anti-Spike antibodies generated upon vaccination and was not related to any reported, serious adverse effects. The time-course analysis of anti-PEG IgG showed no significant booster effect after each dose, whereas for IgM a significant increase in antibody levels was detected after the first and third dose. Data suggest that the presence of PEG in the formulation does not affect safety or efficacy of lipid-nanoparticle-based COVID-19 vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Nanoparticles , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunoglobulin G , Liposomes , Polyethylene Glycols
3.
Nat Nanotechnol ; 17(6): 570-576, 2022 06.
Article in English | MEDLINE | ID: covidwho-1900493

ABSTRACT

Several vaccines against COVID-19 use nanoparticles to protect the antigen cargo (either proteins or nucleic acids), increase the immunogenicity and ultimately the efficacy. The characterization of these nanomedicines is challenging due to their intrinsic complexity and requires the use of multidisciplinary techniques and competencies. The accurate characterization of nanovaccines can be conceptualized as a combination of physicochemical, immunological and toxicological assays. This will help to address key challenges in the preclinical characterization, will guide the rapid development of safe and effective vaccines for current and future health crises, and will streamline the regulatory process.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Humans , Nanomedicine/methods , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Vaccines/chemistry
4.
iScience ; 25(2): 103743, 2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1611783

ABSTRACT

Information concerning the longevity of immunity to SARS-CoV-2 following natural infection may have considerable implications for durability of immunity induced by vaccines. Here, we monitored the SARS-CoV-2 specific immune response in COVID-19 patients followed up to 15 months after symptoms onset. Following a peak at day 15-28 postinfection, the IgG antibody response and plasma neutralizing titers gradually decreased over time but stabilized after 6 months. Compared to G614, plasma neutralizing titers were more than 8-fold lower against variants Beta, Gamma, and Delta. SARS-CoV-2-specific memory B and T cells persisted in the majority of patients up to 15 months although a significant decrease in specific T cells, but not B cells, was observed between 6 and 15 months. Antiviral specific immunity, especially memory B cells in COVID-19 convalescent patients, is long-lasting, but some variants of concern may at least partially escape the neutralizing activity of plasma antibodies.

5.
Biomedicines ; 9(10)2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1438507

ABSTRACT

COVID-19 related morbidity and mortality have been often attributed to an exaggerated immune response. The role of cytokines and chemokines in COVID-19 and their contributions to illness severity are known, and thus their profiling from patient bronchoalveolar lavage (BAL) samples would help in understanding the disease progression. To date, limited studies have been performed on COVID-19 BAL samples, as the manipulation of such specimens (potentially containing live viruses) requires several laboratorial precautions, such as personnel training and special equipment, a requirement that not all laboratories can fulfil. Here, we assessed two fast and easily applicable methods (ultrafiltration and ultraviolet-C irradiation) for their impact on viral load removal or inactivation, respectively and on cytokine profiles preservation. Eight samples of BAL fluids from SARS-CoV2 patients with high viral load were tested. For both methods, complete removal was confirmed by lack of viral replication in Vero E6 cells and by RT-qPCR. Although both methods showed to remove completely the active SARS-CoV2 viral load, only UVC treatment has little or no quantitative effect on total cytokines/chemokines measurements, however cytokines profile and relative ratios are preserved or minimally altered when compared data obtained by the two different decontamination methods. Sample preparation and manipulation can greatly affect the analytical results; therefore, understanding if changes occurred after sample processing is of outmost importance for reliable data and can be useful to improve clinical practice.

7.
Vaccines (Basel) ; 9(6)2021 May 21.
Article in English | MEDLINE | ID: covidwho-1282644

ABSTRACT

Adjuvants have been used for decades to enhance the immune response to vaccines, in particular for the subunit-based adjuvants. Physicochemical properties of the adjuvant-protein antigen complexes, such as size, morphology, protein structure and binding, influence the overall efficacy and safety of the vaccine. Here we show how to perform an accurate physicochemical characterization of the nanoaluminum-ovalbumin complex. Using a combination of existing techniques, we developed a multi-staged characterization strategy based on measurements of increased complexity. This characterization cascade has the advantage of being very flexible and easily adaptable to any adjuvant-protein antigen combinations. It will contribute to control the quality of antigen-adjuvant complexes and immunological outcomes, ultimately leading to improved vaccines.

8.
Nature ; 593(7859): 424-428, 2021 05.
Article in English | MEDLINE | ID: covidwho-1152859

ABSTRACT

Neutralizing antibodies that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are among the most promising approaches against COVID-191,2. A bispecific IgG1-like molecule (CoV-X2) has been developed on the basis of C121 and C135, two antibodies derived from donors who had recovered from COVID-193. Here we show that CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable spike binding to the cellular receptor of the virus, angiotensin-converting enzyme 2 (ACE2). Furthermore, CoV-X2 neutralizes wild-type SARS-CoV-2 and its variants of concern, as well as escape mutants generated by the parental monoclonal antibodies. We also found that in a mouse model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, the simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, and combines the advantages of antibody cocktails with those of single-molecule approaches.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/virology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/therapeutic use , Body Weight , COVID-19/prevention & control , Dependovirus/genetics , Disease Models, Animal , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Female , Humans , Immune Evasion/genetics , Mice , Mice, Inbred C57BL , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL